Computational scatter correction in near real-time with a fast Monte Carlo photon transport model for high-resolution flat-panel CT

Author:

Alsaffar Ammar,Kieß Steffen,Sun Kaicong,Simon Sven

Abstract

AbstractIn computed tomography (CT), scattering causes server quality degradation of the reconstructed CT images by introducing streaks and cupping artifacts which reduce the detectability of low contrast objects. Monte Carlo (MC) simulation is considered the most accurate approach for scatter estimation. However, the existing MC estimators are computationally expensive, especially for high-resolution flat-panel CT. In this paper, we propose a fast and accurate MC photon transport model which describes the physics within the 1 keV to 1 MeV range using multiple controllable key parameters. Based on this model, scatter computation for a single projection can be completed within a range of a few seconds under well-defined model parameters. Smoothing and interpolation are performed on the estimated scatter to accelerate the scatter calculation without compromising accuracy too much compared to measured near scatter-free projection images. Combining the fast scatter estimation with the filtered backprojection (FBP), scatter correction is performed effectively in an iterative manner. To evaluate the proposed MC model, we have conducted extensive experiments on the simulated data and real-world high-resolution flat-panel CT. Compared to the state-of-the-art MC simulators, the proposed MC model achieved a 15$$\times$$ × acceleration on a single-GPU compared to the GPU implementation of the Penelope simulator (MCGPU) utilizing several acceleration techniques, and a 202 $$\times$$ × speed-up on a multi-GPU system compared to the multi-threaded state-of-the-art EGSnrc MC simulator. Furthermore, it is shown that for high-resolution images, scatter correction with sufficient accuracy is accomplished within one to three iterations using a FBP and the proposed fast MC photon transport model.

Funder

Deutscher Akademischer Austauschdienst

Deutsche Forschungsgemeinschaft

Universität Stuttgart

Publisher

Springer Science and Business Media LLC

Subject

Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3