Abstract
AbstractWildfires affect countries worldwide as global warming increases the probability of their appearance. Monitoring vast areas of forests can be challenging due to the lack of resources and information. Additionally, early detection of wildfires can be beneficial for their mitigation. To this end, we explore in simulation the use of swarms of uncrewed aerial vehicles (UAVs) with long autonomy that can cover large areas the size of California to detect early stage wildfires. Four decentralised control algorithms are tested: (1) random walking, (2) dispersion, (3) pheromone avoidance and (4) dynamic space partition. The first three adaptations are known from literature, whereas the last one is newly developed. The algorithms are tested with swarms of different sizes to test the spatial coverage of the system in 24 h of simulation time. Best results are achieved using a version of the dynamic space partition algorithm (DSP) which can detect 82% of the fires using only 20 UAVs. When the swarm consists of 40 or more aircraft 100% coverage can also be achieved. Further tests of DSP show robustness when agents fail and when new fires are generated in the area.
Publisher
Springer Science and Business Media LLC
Reference50 articles.
1. Adepegba, A. A., Miah, S., & Spinello, D. (2016). Multi-agent area coverage control using reinforcement learning. In: Florida artificial intelligence research society conference (pp. 368–373).
2. Alexandrov, V., Kirik, K., & Kobrin, A. (2018). Multi-robot voronoi tessellation based area partitioning algorithm study. Paladyn, Journal of Behavioral Robotics, 9(1), 214–220. https://doi.org/10.1515/pjbr-2018-0014.
3. Alkhatib, A. A. (2014). A review on forest fire detection techniques. International Journal of Distributed Sensor Networks, 10(3), 597–368. https://doi.org/10.1155/2014/597368.
4. Atten, C., Channouf, L., & Danoy, G. et al (2016). Uav fleet mobility model with multiple pheromones for tracking moving observation targets. In European conference on the applications of evolutionary computation (pp. 332–347). Springer. https://doi.org/10.1007/978-3-319-31204-0_22
5. Aydin, B., Selvi, E., Tao, J., et al. (2019). Use of fire-extinguishing balls for a conceptual system of drone-assisted wildfire fighting. Drones, 3(1), 17. https://doi.org/10.3390/drones3010017.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献