Use of Fire-Extinguishing Balls for a Conceptual System of Drone-Assisted Wildfire Fighting

Author:

Aydin Burchan,Selvi Emre,Tao Jian,Starek MichaelORCID

Abstract

This paper examines the potential use of fire extinguishing balls as part of a proposed system, where drone and remote-sensing technologies are utilized cooperatively as a supplement to traditional firefighting methods. The proposed system consists of (1) scouting unmanned aircraft system (UAS) to detect spot fires and monitor the risk of wildfire approaching a building, fence, and/or firefighting crew via remote sensing, (2) communication UAS to establish and extend the communication channel between scouting UAS and fire-fighting UAS, and (3) a fire-fighting UAS autonomously traveling to the waypoints to drop fire extinguishing balls (environmental friendly, heat activated suppressants). This concept is under development through a transdisciplinary multi-institutional project. The scope of this paper encloses general illustration of this design, and the experiments conducted so far to evaluate fire extinguishing balls. The results of the experiments show that smaller size fire extinguishing balls available in the global marketplace attached to drones might not be effective in aiding in building fires (unless there are open windows in the buildings already). On the contrary, results show that even the smaller size fire extinguishing balls might be effective in extinguishing short grass fires (around 0.5 kg size ball extinguished a circle of 1-meter of short grass). This finding guided the authors towards wildfire fighting rather than building fires. The paper also demonstrates building of heavy payload drones (around 15 kg payload), and the progress of development of an apparatus carrying fire-extinguishing balls attachable to drones.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Reference40 articles.

1. A survey on technologies for automatic forest fire monitoring, detection, and fighting using unmanned aerial vehicles and remote sensing techniques

2. Key Findings from the 2017 Verisk Wildfire Risk Analysishttps://www.verisk.com/insurance/visualize/key-findings-from-the-2017-verisk-wildfire-risk-analysis/?utm_source=Social&utm_medium=Twitter&utm_campaign=VeriskSM&utm_content=842017

3. Charts for Interpreting Wildland Fire Behavior Characteristics;Andrews,1982

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards Autonomous Firefighting UAVs: Online Planners for Obstacle Avoidance and Payload Delivery;Journal of Intelligent & Robotic Systems;2024-01-13

2. Firefighting Drone Configuration and Scheduling for Wildfire Based on Loss Estimation and Minimization;Drones;2024-01-10

3. Surveying techniques for urban areas;Earth Observation in Urban Monitoring;2024

4. Communication Perspective of Wildfire Detection and Suppression: A Survey of Technologies, Requirements, and Future Directions;2023 15th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT);2023-10-30

5. Mapping and Characterizing Fire;Landscape Fire, Smoke, and Health;2023-10-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3