Modified Similarity Algorithm for Collaborative Filtering
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-319-62698-7_31
Reference10 articles.
1. Polatidis, N., Georgiadis, C.K.: A multi-level collaborative filtering method that improves recommendations. Expert Syst. Appl. 48, 100–110 (2015)
2. Cui, Y., Song, S., He, L., et al.: A collaborative filtering algorithm based on user activity level. In: 2012 Fifth International Conference on Business Intelligence and Financial Engineering, pp. 80–83. IEEE (2012)
3. Chen, D.E.: The collaborative filtering recommendation algorithm based on BP neural networks. In: International Symposium on Intelligent Ubiquitous Computing and Education, pp. 234–236. IEEE (2009)
4. Jia, C.X., Liu, R.R.: Improve the algorithmic performance of collaborative filtering by using the interevent time distribution of human behaviors. Physica A: Stat. Mech. Appl. 436, 236–245 (2015)
5. Bobadilla, J., Ortega, F., Hernando, A., et al.: Generalization of recommender systems: Collaborative filtering extended to groups of users and restricted to groups of items. Expert Syst. Appl. 39(1), 172–186 (2012)
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. User-Centric Adaptive Clustering Approach to Address Long-Tail Problem in Music Recommendation System;Advances in Data-Driven Computing and Intelligent Systems;2023
2. Utilizing Alike Neighbor Influenced Similarity Metric for Efficient Prediction in Collaborative Filter-Approach-Based Recommendation System;Applied Sciences;2022-11-17
3. Survey of similarity functions on neighborhood-based collaborative filtering;Expert Systems with Applications;2021-12
4. A Survey of Long-Tail Item Recommendation Methods;Wireless Communications and Mobile Computing;2021-11-29
5. A Comparative Study on Prediction Approaches of Item-Based Collaborative Filtering in Neighborhood-Based Recommendations;Wireless Personal Communications;2021-06-27
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3