A Survey of Long-Tail Item Recommendation Methods

Author:

Qin Jing1ORCID

Affiliation:

1. Northeastern University, China

Abstract

Recommender systems represent a critical field of AI technology applications. The core function of a recommender system is to recommend items of interest to users, but if it is only user history-based (purchasing or browsing data), it can only recommend similar products to a user, which makes the user feel fatigued (creating so-called “Information Cocoons”). Besides, transaction data (purchasing or browsing data) in various fields usually follow Pareto distributions. Accordingly, 20% of products are purchased or viewed a greater number of times (short-head items), while the remaining 80% of products are purchased or viewed less frequently (long-tail items). Using the traditional recommendation method, considering only the accuracy of recommendations, the coverage rate is relatively low, and most of the recommended items are short-head items. The long-tail item recommendation method not only considers the recommendation of short-head items but also considers recommending more long-tail items to users, thus improving the coverage and diversity of the recommendation results. Long-tail item recommendation research has become a frontier issue in recommendation systems in recent years. While the current research paper is still scarce, there have been related research achievements in top-level conferences in the field of computers, such as VLDB and IJCAI. Due to the fact that there is no review literature in this field, to allow readers to better understand the research status of the long-tail item recommendation method, this paper summarizes the progress of the research on long-tail item recommendation methods (from clustering-based, which began in 2008, to deep learning-based methods, which began in 2020) and the future directions associated with this research.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Reference74 articles.

1. Using collaborative filtering to weave an information tapestry

2. An open architecture for collaborative filtering of Netnews. CSCW ‘94;P. Resnick

3. Item-based collaborative filtering recommendation algorithms;B. Sarwar

4. Graph Convolutional Networks for Hyperspectral Image Classification

5. A survey: Deep learning for hyperspectral image classification with few labeled samples

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient and Flexible Long-Tail Recommendation Using Cosine Patterns;INFORMS Journal on Computing;2024-05-10

2. Improving Long-Tail Item Recommendation with Graph Augmentation;Proceedings of the 32nd ACM International Conference on Information and Knowledge Management;2023-10-21

3. Causal embedding of user interest and conformity for long-tail session-based recommendations;Information Sciences;2023-10

4. Representation Online Matters: Practical End-to-End Diversification in Search and Recommender Systems;2023 ACM Conference on Fairness, Accountability, and Transparency;2023-06-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3