1. Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence);D Achlioptas,2005
2. Ackermann, M.R., Blömer, J.: Coresets and approximate clustering for Bregman divergences. In: Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2009), pp. 1088–1097. Society for Industrial and Applied Mathematics (SIAM) (2009).
http://www.cs.uni-paderborn.de/uploads/tx_sibibtex/CoresetsAndApproximateClusteringForBregmanDivergences.pdf
3. Lecture Notes in Computer Science;MR Ackermann,2010
4. Ackermann, M.R., Blömer, J., Scholz, C.: Hardness and non-approximability of Bregman clustering problems. In: Electronic Colloquium on Computational Complexity (ECCC), vol. 18, no. 15, pp. 1–20 (2011).
http://eccc.uni-trier.de/report/2011/015/
, report no. TR11-015
5. Ackermann, M.R., Blömer, J., Sohler, C.: Clustering for metric and non-metric distance measures. ACM Trans. Algorithms 6(4), Article No. 59:1–26 (2010). Special issue on SODA 2008