Clustering for metric and nonmetric distance measures

Author:

Ackermann Marcel R.1,Blömer Johannes1,Sohler Christian2

Affiliation:

1. University of Paderborn, Paderborn, Germany

2. Technische Universität Dortmund, Dortmund, Germany

Abstract

We study a generalization of the k -median problem with respect to an arbitrary dissimilarity measure D. Given a finite set P of size n , our goal is to find a set C of size k such that the sum of errors D( P,C ) = ∑ pP min cC {D( p,c )} is minimized. The main result in this article can be stated as follows: There exists a (1+ϵ)-approximation algorithm for the k -median problem with respect to D, if the 1-median problem can be approximated within a factor of (1+ϵ) by taking a random sample of constant size and solving the 1-median problem on the sample exactly. This algorithm requires time n 2 O ( mk log( mk /ϵ)), where m is a constant that depends only on ϵ and D. Using this characterization, we obtain the first linear time (1+ϵ)-approximation algorithms for the k -median problem in an arbitrary metric space with bounded doubling dimension, for the Kullback-Leibler divergence (relative entropy), for the Itakura-Saito divergence, for Mahalanobis distances, and for some special cases of Bregman divergences. Moreover, we obtain previously known results for the Euclidean k -median problem and the Euclidean k -means problem in a simplified manner. Our results are based on a new analysis of an algorithm of Kumar et al. [2004].

Funder

Deutsche Forschungsgemeinschaft

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3