Hybrid Mass Detection in Breast MRI Combining Unsupervised Saliency Analysis and Deep Learning
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-319-66179-7_68
Reference19 articles.
1. Vignati, A., Giannini, V., et al.: A fully automatic lesion detection method for DCE-MRI fat-suppressed breast images, 26 February 2009
2. Ertas, G., Doran, S., Leach, M.O.: Computerized detection of breast lesions in multi-centre and multi-instrument DCE-MR data using 3D principal component maps and template matching. Phys. Med. Biol. 56, 7795–7811 (2011)
3. McClymont, D., Mehnert, A., et al.: Fully automatic lesion segmentation in breast MRI using mean-shift and graph-cuts on a region adjacency graph. J. Magn. Reson. Imaging 39, 795–804 (2014)
4. Gallego-Ortiz, C., Martel, A.L.: Improving the accuracy of computer-aided diagnosis for breast MR imaging by differentiating between mass and nonmass lesions. Radiology 278, 679–688 (2016)
5. Agner, S.C., Soman, S., et al.: Textural kinetics: a novel dynamic contrast-enhanced (DCE)-MRI feature for breast lesion classification. J. Digit. Imaging 24, 446–463 (2011)
Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Weakly Supervised Breast Lesion Detection in Dynamic Contrast-Enhanced MRI;Journal of Digital Imaging;2023-05-30
2. MRI‐Based Breast Cancer Classification and Localization by Multiparametric Feature Extraction and Combination Using Deep Learning;Journal of Magnetic Resonance Imaging;2023-04-04
3. Three-dimensional affinity learning based multi-branch ensemble network for breast tumor segmentation in MRI;Pattern Recognition;2022-09
4. Weakly Supervised Breast Lesions Detection in Dynamic Contrast Enhancement Magnetic Resonance Imaging;2021 7th International Conference on Systems and Informatics (ICSAI);2021-11-13
5. Automatic breast lesion detection in ultrafast DCE‐MRI using deep learning;Medical Physics;2021-08-30
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3