MRI‐Based Breast Cancer Classification and Localization by Multiparametric Feature Extraction and Combination Using Deep Learning

Author:

Cong Chao123ORCID,Li Xiaoguang1,Zhang Chunlai1,Zhang Jing1,Sun Kaixiang2,Liu Lianluyi2,Ambale‐Venkatesh Bharath4ORCID,Chen Xiao3,Wang Yi3

Affiliation:

1. Department of Radiology Daping Hospital, Army Medical University Chongqing China

2. School of Electrical and Electronic Engineering Chongqing University of Technology Chongqing China

3. Department of Nuclear Medicine Daping Hospital, Army Medical University Chongqing China

4. Department of Radiology Johns Hopkins University School of Medicine Baltimore Maryland USA

Abstract

BackgroundDeep learning (DL) have been reported feasible in breast MRI. However, the effectiveness of DL method in mpMRI combinations for breast cancer detection has not been well investigated.PurposeTo implement a DL method for breast cancer classification and detection using feature extraction and combination from multiple sequences.Study TypeRetrospective.PopulationA total of 569 local cases as internal cohort (50.2 ± 11.2 years; 100% female), divided among training (218), validation (73) and testing (278); 125 cases from a public dataset as the external cohort (53.6 ± 11.5 years; 100% female).Field Strength/SequenceT1‐weighted imaging and dynamic contrast‐enhanced MRI (DCE‐MRI) with gradient echo sequences, T2‐weighted imaging (T2WI) with spin‐echo sequences, diffusion‐weighted imaging with single‐shot echo‐planar sequence and at 1.5‐T.AssessmentA convolutional neural network and long short‐term memory cascaded network was implemented for lesion classification with histopathology as the ground truth for malignant and benign categories and contralateral breasts as healthy category in internal/external cohorts. BI‐RADS categories were assessed by three independent radiologists as comparison, and class activation map was employed for lesion localization in internal cohort. The classification and localization performances were assessed with DCE‐MRI and non‐DCE sequences, respectively.Statistical TestsSensitivity, specificity, area under the curve (AUC), DeLong test, and Cohen's kappa for lesion classification. Sensitivity and mean squared error for localization. A P‐value <0.05 was considered statistically significant.ResultsWith the optimized mpMRI combinations, the lesion classification achieved an AUC = 0.98/0.91, sensitivity = 0.96/0.83 in the internal/external cohorts, respectively. Without DCE‐MRI, the DL‐based method was superior to radiologists' readings (AUC 0.96 vs. 0.90). The lesion localization achieved sensitivities of 0.97/0.93 with DCE‐MRI/T2WI alone, respectively.Data ConclusionThe DL method achieved high accuracy for lesion detection in the internal/external cohorts. The classification performance with a contrast agent‐free combination is comparable to DCE‐MRI alone and the radiologists' reading in AUC and sensitivity.Evidence Level3.Technical EfficacyStage 2.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3