1. Amari, S.I., Karakida, R., Oizumi, M.: Information geometry connecting Wasserstein distance and Kullback–Leibler divergence via the entropy-relaxed transportation problem. Information Geometry (2018)
2. Lecture Notes in Computer Science;RV Belavkin,2013
3. Belavkin, R.V.: Optimal measures and Markov transition kernels. J. Glob. Optim. 55, 387–416 (2013)
4. Belavkin, R.V.: Asymmetric topologies on statistical manifolds. In: Nielsen, F., Barbaresco, F. (eds.) Geometric Science of Information. Lecture Notes in Computer Science, vol. 9389, pp. 203–210. Springer International Publishing, Berlin (2015)
5. Belavkin, R.V.: On variational definition of quantum entropy. In: A. Mohammad-Djafari, F. Barbaresco (eds.) AIP Conference Proceedings of Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MAXENT 2014), Clos Lucé, Amboise, France, vol. 1641, p. 197 (2015)