Monoaural Audio Source Separation Using Deep Convolutional Neural Networks

Author:

Chandna Pritish,Miron Marius,Janer Jordi,Gómez Emilia

Publisher

Springer International Publishing

Reference19 articles.

1. Abdel-Hamid, O., Mohamed, A.R., Jiang, H., Deng, L., Penn, G., Yu, D.: Convolutional neural networks for speech recognition. IEEE/ACM Trans. Audio Speech Lang. Process. 22(10), 1533–1545 (2014)

2. Chandna, P.: Audio source separation using deep neural networks, Master Thesis, Universitat Pompeu Fabra (2016)

3. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. CoRR, abs/1501.00092 (2015)

4. Durrieu, J., Ozerov, A., Févotte, C.: Main instrument separation from stereophonic audio signals using a source/filter model. In: 17th European Signal Processing Conference (2009)

5. Gómez, E., Cañadas, F., Salamon, J., Bonada, J., Vera, P., Cabañas, P.: Predominant fundamental frequency estimation vs singing voice separation for the automatic transcription of accompanied flamenco singing. In: 13th International Society for Music Information Retrieval Conference (ISMIR 2012) (2012)

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wind Noise Reduction Strategy in Hearing Aids Through U-Net Deep Learning and Microphone Enclosure Design;IEEE Sensors Journal;2024-06-01

2. Deep Neural Networks Based Denoising of Regional Seismic Waveforms and Impact on Analysis of North Korean Nuclear Tests;Pure and Applied Geophysics;2024-05-02

3. Music Source Separation With Band-Split Rope Transformer;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

4. SCNet: Sparse Compression Network for Music Source Separation;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

5. A review on the application of blind source separation in vibration analysis of mechanical systems;Measurement;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3