Author:
Kapočiūtė-Dzikienė Jurgita,Damaševičius Robertas,Woźniak Marcin
Publisher
Springer International Publishing
Reference42 articles.
1. Agarwal, B., Mittal, N., Bansal, P., Garg, S.: Sentiment analysis using common-sense and context information. Comput. Intell. Neurosci. 2015, 1–9 (2015)
2. Akhtar, M.S., Kumar, A., Ekbal, A., Bhattacharyya, P.: A hybrid deep learning architecture for sentiment analysis. In: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pp. 482–493 (2016)
3. Asghar, M.Z., Khan, A., Ahmad, Sh., Qasim, M., Khan, I.A.: Lexicon-enhanced sentiment analysis framework using rule-based classification scheme. PLOS ONE 12(2), e0171649 (2017)
4. Augustyniak, Ł., Szymański, P., Kajdanowicz, T., Tuligłowicz, W.: Comprehensive study on lexicon-based ensemble classification sentiment analysis. Entropy 18(1), 4 (2015)
5. Baziotis, Ch., Pelekis, N., Doulkeridis, Ch.: DataStories at SemEval-2017 task 4: deep LSTM with attention for message-level and topic-based sentiment analysis. In: Proceedings of the 11th International Workshop on Semantic Evaluation, SemEval 2017 (2017)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献