Abstract
AbstractA new box model is employed to simulate the oxygen-dependent cycling of nutrients in the Peruvian oxygen minimum zone (OMZ). Model results and data for the present state of the OMZ indicate that dissolved iron is the limiting nutrient for primary production and is provided by the release of dissolved ferrous iron from shelf and slope sediments. Most of the removal of reactive nitrogen occurs by anaerobic oxidation of ammonium where ammonium is delivered by aerobic organic nitrogen degradation. Model experiments simulating the effects of ocean deoxygenation and warming show that the productivity of the Peruvian OMZ will increase due to the enhanced release of dissolved iron from shelf and slope sediments. A positive feedback loop rooted in the oxygen-dependent benthic iron release amplifies, both, the productivity rise and oxygen decline in ambient bottom waters. Hence, a 1% decline in oxygen supply reduces oxygen concentrations in sub-surface waters of the continental margin by 22%. The trend towards enhanced productivity and amplified deoxygenation will continue until further phytoplankton growth is limited by the loss of reactive nitrogen. Under nitrogen-limitation, the redox state of the OMZ is stabilized by negative feedbacks. A further increase in productivity and transition to sulfidic conditions is only possible if the rate of nitrogen fixation increases drastically under anoxic conditions. Such a transition would lead to a wide-spread accumulation of toxic sulfide with detrimental consequences for fishery yields in the Peruvian OMZ that currently provides a significant fraction of the global fish catch.
Funder
Deutsche Forschungsgemeinschaft
GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel
Publisher
Springer Science and Business Media LLC
Subject
Earth-Surface Processes,Water Science and Technology,Environmental Chemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献