The Shelf‐To‐Basin Transport of Iron From the Northern U.S. West Coast to the Pacific Ocean

Author:

Pham Anh Le‐Duy1ORCID,Damien Pierre1,McCoy Daniel1ORCID,Mar Matthew1ORCID,Kessouri Fayçal2ORCID,McWilliams James C.1ORCID,Moffett James3ORCID,Bianchi Daniele1ORCID

Affiliation:

1. Department of Atmospheric and Oceanic Sciences University of California Los Angeles Los Angeles CA USA

2. Southern California Coastal Water Research Project Costa Mesa CA USA

3. Department of Biological Sciences University of Southern California Los Angeles CA USA

Abstract

AbstractRelease of iron (Fe) from continental shelves is a major source of this limiting nutrient for phytoplankton in the open ocean, including productive Eastern Boundary Upwelling Systems. The mechanisms governing the transport and fate of Fe along continental margins remain poorly understood, reflecting interaction of physical and biogeochemical processes that are crudely represented by global ocean biogeochemical models. Here, we use a submesoscale‐permitting physical‐biogeochemical model to investigate processes governing the delivery of shelf‐derived Fe to the open ocean along the northern U.S. West Coast. We find that a significant fraction (∼20%) of the Fe released by sediments on the shelf is transported offshore, fertilizing the broader Northeast Pacific Ocean. This transport is governed by two main pathways that reflect interaction between the wind‐driven ocean circulation and Fe release by low‐oxygen sediments: the first in the surface boundary layer during upwelling events; the second in the bottom boundary layer, associated with pervasive interactions of the poleward California Undercurrent with bottom topography. In the water column interior, transient and standing eddies strengthen offshore transport, counteracting the onshore pull of the mean upwelling circulation. Several hot‐spots of intense Fe delivery to the open ocean are maintained by standing meanders in the mean current and enhanced by transient eddies and seasonal oxygen depletion. Our results highlight the importance of fine‐scale dynamics for the transport of Fe and shelf‐derived elements from continental margins to the open ocean, and the need to improve representation of these processes in biogeochemical models used for climate studies.

Funder

Center for Hierarchical Manufacturing, National Science Foundation

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3