Soil organic carbon fractions in the Great Plains of the United States: an application of mid-infrared spectroscopy

Author:

Sanderman JonathanORCID,Baldock Jeffrey A.,Dangal Shree R. S.,Ludwig Sarah,Potter Stefano,Rivard Charlotte,Savage Kathleen

Abstract

AbstractSpectroscopy is a powerful means of increasing the availability of soil data necessary for understanding carbon cycling in a changing world. Here, we develop a calibration transfer methodology to appropriately apply an existing mid infrared (MIR) spectral library with analyte data on the distribution of soil organic carbon (SOC) into particulate (POC), mineral-associated (MAOC), and pyrogenic (PyC) forms to nearly 8000 soil samples collected in the Great Plains ecoregion of the United States. We then use this SOC fraction database in combination with a machine learning-based predictive soil mapping approach to explore the controls on the distribution of fractions through soil profiles and across the region. The relative abundance of each fraction had unique depth distribution profiles with POC fraction dropping exponentially with depth, the MAOC fraction having a broad distribution with a maxima at 35–50 cm, and the PyC fraction showed a slight subsurface maxima (10–20 cm) and then a steady decline with increasing depth. Within the Great Plains ecoregion, clay content was a strong control on the total amount and relative proportion of each fraction in both the surface and subsoil horizons. Sandy soils and soils in cool semi-arid regions contained significantly more POC relative to the MAOC and PyC fractions. Cultivated soils had significantly less SOC than grassland soils with losses following a predictable pattern: POC > MAOC ≫ PyC. This SOC fraction database and resulting maps can now form the basis for improved representation of SOC dynamics in biogeochemical models.

Funder

National Institute of Food and Agriculture

Publisher

Springer Science and Business Media LLC

Subject

Earth-Surface Processes,Water Science and Technology,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3