Review and prospect of soil compound erosion

Author:

Yang Wenqian,Zhang Gangfeng,Yang Huimin,Lin Degen,Shi Peijun

Abstract

AbstractSoil erosion is one of the most serious environmental issues constraining the sustainable development of human society and economies. Soil compound erosion is the result of the alternation or interaction between two or more erosion forces. In recent years, fluctuations and extreme changes in climatic factors (air temperature, precipitation, wind speed, etc.) have led to an increase in the intensity and extent of compound erosion, which is increasingly considered in soil erosion research. First, depending on the involvement of gravity, compound erosion process can be divided into compound erosion with and without gravity. We systematically summarized the research on the mechanisms and processes of alternating or interacting soil erosion forces (wind, water, and freeze-thaw) considering different combinations, combed the characteristics of compound erosion in three typical regions, namely, high-elevation areas, high-latitude areas, and dry and wet transition regions, and reviewed soil compound erosion research methods, such as station observations, simulation experiments, prediction models, and artificial neural networks. The soil erosion model of wind, water, and freeze-thaw interaction is the most significant method for quantifying and predicting compound erosion. Furthermore, it is proposed that there are several issues such as unclear internal mechanisms, lack of comprehensive prediction models, and insufficient scale conversion methods in soil compound erosion research. It is also suggested that future soil compound erosion mechanism research should prioritize the coupling of compound erosion forces and climate change.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Earth-Surface Processes,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3