Simulation of the Spatial Flow of Wind Erosion Prevention Services in Arid Inland River Basins: A Case Study of Shiyang River Basin, NW China

Author:

Pan Jinghu1ORCID,Wei Juan1,Xu Baicui2

Affiliation:

1. College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China

2. College of Urban Environment, Lanzhou City University, Lanzhou 730070, China

Abstract

Wind erosion is a key global environmental problem. As an important protective measure to provide services to the ecosystems in wind-eroded areas, the wind erosion prevention service is of great significance to the management of wind and sand hazards and ecological environment restoration in the wind-eroded areas and the neighboring areas. Taking the Shiyang River basin as the study area, the quality of supplies for wind erosion prevention services was estimated using the RWEQ model for the years 2005, 2010, 2015, and 2020; the trajectories of air masses at wind speeds higher than the sand-causing wind speeds were simulated based on the forward trajectory module of the HYSPLIT model for a 24 h period; the spatial simulation of the flow of wind erosion prevention services on a daily scale with Minqin Station as the sand source was carried out; and the beneficiary areas of wind erosion prevention services were identified. Based on the RWEQ model, the spatial patterns of potential wind erosion, actual wind erosion, and wind and sand stabilization services were obtained, and the supply areas were divided. From 2005 to 2020, the wind erosion prevention service flow in the Shiyang River basin was distributed along a northwest–southeast direction, with a radial decrease from the center to the periphery, and with an extremely strong extraterritorial effect. The amount of wind erosion in the basin has a variable downward tendency over time and a spatial distribution pattern of high in the north and low in the south. The area of higher sand fixation is distributed in the eastern oasis area and desert junction zone. The HYSPLIT model was used to simulate the transport paths of wind and sand within 24 h during 2005–2020, the transmission paths of the wind erosion prevention service flow were obtained to be 59–134, and the flows were 2.55 × 104–3.85 × 106 t, displaying a changing trend of first decreasing, then increasing, and then decreasing. Gansu Province, Ningxia Hui Autonomous Region, and Inner Mongolia Autonomous Region are the most important areas benefiting from the wind erosion prevention service flow in the Shiyang River basin. The wind erosion prevention service flows in the basin benefit 47 cities in 9 provinces.

Funder

ational Natural Science Foundation of China

Natural Science Foundation of Gansu Province

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3