1. Adimurthi, Ghoshal, S.S., Veerappa Gowda, GD: Exact controllability of scalar conservation laws with strict convex flux. Math. Control Relat. Fields 4, 401–449 (2014)
2. Aggarwal, A., Goatin, P.: Crowd dynamics through non-local conservation laws. Bull. Braz. Math. Soc. (N.S.) 47, 37–50 (2016)
3. Aı̆zerman, M.A., Bredihina, E.A., Černikov, S.N., Gantmaher, F.R., Gel’fand, I.M., Gel’fer, S.A., Harazov, D.F., Kadec, M.I., Korobeı̆nik, J.F., Kreı̆n, M.G., Oleı̆nik, O.A., Pyateckiı̆-Šapiro, I.I., Subhankulov, M.A., Temko, K.V., Tureckiı̆, A.N.: Seventeen Papers on Analysis. American Mathematical Society Translations, Ser. 2, vol. 26. American Mathematical Society, Providence (1963)
4. Amadori, D., Shen, W.: Front tracking approximations for slow erosion. Discrete Contin. Dyn. Syst. - A 32, 1481–1502 (2012)
5. Ancona, F., Bressan, A., Coclite, G.M.: Some results on the boundary control of systems of conservation laws. In: Hou, T.Y., Tadmor, E (eds.) Hyperbolic Problems: Theory, Numerics, Applications, pp 255–264. Springer, Berlin (2003)