Nine Point Bending Test Technique for Understanding of Sintered Silver Die Bonding Failure Mechanism

Author:

Wakamoto K.ORCID,Fuji K.,Otsuka T.,Nakahara K.,Namazu T.

Abstract

Abstract The Sintered silver (s–Ag) die degradation is commonly evaluated by thermal shocked test (TST), which evaluates the material’s durability against a heating/cooling cycle. Materials with different coefficient of thermal expansion (CTE) give rise to thermal out-of-plane deformation surrounding the bonding part, which deteriorates s–Ag die part by repeated thermal and mechanical stress during TST. For the safe and reliable design of s–Ag die toward long-term durability, the contribution of thermal and mechanical stresses to degradation should be understood separately. Clarify the overall s–Ag die degradation mechanism during TST compared to the new mechanical bending test that can apply out-of-plane deformation. The authors propose a new mechanical bending test technique, called the nine-point bending (NBT) test, which can provide out-of-plane deformation with a s–Ag die-attached specimen as TST like. By comparing NBT and TST, the degradation mechanism of the s–Ag die-attach element can be understood from both thermal and mechanical aspects. In scanning acoustic tomography (SAT) analysis, a similar degradation ratio between NBT and TST is obtained, which indicates that mechanical stress plays a significant role in deteriorating s–Ag die layer in TST. After 1000 cycles, however, cracking and s–Ag material aging coexist in TST only, destabilizing s–Ag die fracture. s–Ag main degradation cause in TST is clarified with mechanical stress by comparing NBT. In addition, thermally material aging destabilized the s–Ag degradation during TST.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3