Residual Stress Distributions in Dissimilar Titanium Alloy Diffusion Bonds Produced From Powder Using Field-Assisted Sintering Technology (FAST-DB)

Author:

Levano Blanch Oliver,Pope Jacob,Violatos Ioannis,Rahimi Salaheddin,Jackson Martin

Abstract

AbstractThe conventional approach when engineering components manufactured from titanium is to design the thermomechanical processing to develop an optimal microstructure in a single alloy. However, this conventional approach can lead to unnecessary over-engineering of components, particularly when only a specific subcomponent region is under demanding service stresses and environments. One approach being developed to join multiple alloys in a single component and enhance engineering performance and efficiency is FAST-DB—whereby multiple alloys in powder form are diffusion bonded (DB) using field-assisted sintering technology (FAST). But the joining of multiple alloys using conventional welding and joining techniques can generate high residual stress in the bond region that can affect the mechanical performance of the components. In this study, the residual stress distribution across dissimilar titanium alloy diffusion bonds, processed from powder using FAST, were measured using X-Ray diffraction and the Contour method. The measurements show low residual stress in the bulk material processed with FAST as well as in the diffusion bond region. In addition, FAST-DB preforms subsequently hot forged into different near-net shapes were also analyzed to understand how the residual stress in the bond region is affected by a subsequent processing. Overall, no sharp transitions in residual stress was observed between the dissimilar alloys. This study reinforces confidence in the solid-state FAST process for manufacturing next generation components from multiple titanium alloy powders.

Publisher

Springer Science and Business Media LLC

Subject

Metals and Alloys,Mechanics of Materials,Condensed Matter Physics

Reference55 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3