Error Statistics in Data Assimilation: Estimation and Modelling
Author:
Publisher
Springer Berlin Heidelberg
Link
http://link.springer.com/content/pdf/10.1007/978-3-540-74703-1_5
Reference47 articles.
1. Belo Pereira, M. and L. Berre, 2006. The use of an ensemble approach to study the background error covariances in a global NWP model. Mon. Weather Rev., 134, 2466–2489.
2. Bormann, N., S. Saarinen, G. Kelly and J.-N. Thépaut, 2003. The spatial structure of observation errors in atmospheric motion vectors from geostationary satellite data. Mon. Weather Rev., 131, 706–718.
3. Buehner, M., 2005. Ensemble-derived stationary and flow-dependent background error covariances: Evaluation in a quasi-operational NWP setting. Q. J. R. Meteorol. Soc., 131, 1013–1044.
4. Buehner, M. and M. Charron, 2007. Spectral and spatial localization of background-error correlations for data assimilation. Q. J. R. Meteorol. Soc., 133, 615–630.
5. Buehner, M., P. Gauthier and Z. Liu, 2005. Evaluation of new estimates of background and observation error covariances for variational assimilation. Q. J. R. Meteorol. Soc., 131, 3373–3383.
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Comparison of different momentum control variables on assimilating radar observations for the forecasts of a dispersive convective event;Frontiers in Earth Science;2023-04-06
2. Soil moisture estimation in South Asia via assimilation of SMAP retrievals;Hydrology and Earth System Sciences;2022-04-29
3. A Review of Innovation-Based Methods to Jointly Estimate Model and Observation Error Covariance Matrices in Ensemble Data Assimilation;Monthly Weather Review;2020-10-01
4. Diagnostic Analysis of a Data Assimilation Framework for Improving Snow Mass Estimation in Complex Terrain;IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium;2020-09-26
5. The conditioning of least-squares problems in variational data assimilation;Numerical Linear Algebra with Applications;2018-02-23
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3