Publisher
Springer Berlin Heidelberg
Reference7 articles.
1. Atannasov, K. (1999). Intuitionistic Fuzzy Sets: Theory and Applications. Physica-Verlag, New York.
2. Dvurečenskij, A. and Pulmannová, S. (2000). Trends in Quantum Structures. Kluwer Academic Publishers, Dordrecht.
3. Grzegorzewski, P. and Mrowka, E. (2002). Probability on intuitionistic fuzzy events. In: Grzegorzewski, P., Hryniewicz, O. and Gil, M.A. (Eds.) Soft Methods in Probability, Statistics and Data Analysis, Physica Verlag, New York, pp. 105–115.
4. Petrovičová, J. and Riečan, B. (2004). On the Central Limit Theorem on IFS events. (Submitted).
5. Riečan, B. (2003). A descriptive definition of the probability on intuitionistic fuzzy sets. In: Wagenecht, M. and Hampet, R. (Eds.) Proceedings EUSFLAT’2003, Zittau-Goerlitz, Univ. Appl. Sci., pp. 263–266.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Evidence Theory in Picture Fuzzy Set Environment;Journal of Mathematics;2021-05-18
2. On the Atanassov Concept of Fuzziness and One of Its Modification;Imprecision and Uncertainty in Information Representation and Processing;2015-12-23
3. On an Intuitionistic Fuzzy Probability Theory;Advances in Intelligent Systems and Computing;2015-10-24
4. On the Continuity of Probability on IF Sets;Strengthening Links Between Data Analysis and Soft Computing;2015
5. The individual ergodic theorem on the IF-events with product;Soft Computing;2009-01-30