Automatically evolving preference-based dispatching rules for multi-objective job shop scheduling

Author:

Zeiträg YannikORCID,Figueira José Rui

Abstract

AbstractDispatching rules represent a simple heuristic for finding good solutions for job shop scheduling problems. Due to their fast applicability and easy handling, they are often used in manufacturing companies to create appropriate production schedules. It has been shown that dispatching rules that are specifically designed for the requirements of a particular environment improve the performance of schedules. Hyper-heuristics based on genetic programming can be used for the automated generation of such dispatching rules. Evolutionary algorithms search the space of dispatching rule components for the most effective priority function to optimize the performance of the resulting schedule. Various studies have highlighted the advantages in the single-objective case, which made it possible to derive a large number of new dispatching rules that exceeded previous benchmark rules. Because it is usually necessary to consider more than one objective simultaneously to ensure effective creation of schedules, the need for a multi-objective optimization method arises. In this paper, we propose an interactive multi-objective optimization method, namely the reference point method, implemented in a hyper-heuristic genetic programming framework. A decision support system has also been developed and implemented in a web-based application to facilitate interaction with the user. Incorporating preferences into the solution process aims to efficiently evolve a dispatching rule that meets the expectations of a decision-maker. A fictitious experiment was carried out in a benchmark job shop environment. The results show that the final solution selected by the decision-maker can produce schedules achieving a desired compromise between the makespan, total tardiness, and total waiting time. Testing the evolved dispatching rule on an independent set of instances and comparing its performance with other benchmark dispatching rules revealed that the proposed method successfully finds dispatching rules that meet the decision-maker’s expectations and are capable of reproducing similar compromise schedules for unseen problems in the same environment.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Management Science and Operations Research,General Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3