Makespan minimization with OR-precedence constraints

Author:

Happach FelixORCID

Abstract

AbstractWe consider a variant of the NP-hard problem of assigning jobs to machines to minimize the completion time of the last job. Usually, precedence constraints are given by a partial order on the set of jobs, and each job requires all its predecessors to be completed before it can start. In this paper, we consider a different type of precedence relation that has not been discussed as extensively and is called OR-precedence. In order for a job to start, we require that at least one of its predecessors is completed—in contrast to all its predecessors. Additionally, we assume that each job has a release date before which it must not start. We prove that a simple List Scheduling algorithm due to Graham (Bell Syst Tech J 45(9):1563–1581, 1966) has an approximation guarantee of 2 and show that obtaining an approximation factor of $$4/3 - \varepsilon $$ 4 / 3 - ε is NP-hard. Further, we present a polynomial-time algorithm that solves the problem to optimality if preemptions are allowed. The latter result is in contrast to classical precedence constraints where the preemptive variant is already NP-hard. Our algorithm generalizes previous results for unit processing time jobs subject to OR-precedence constraints, but without release dates. The running time of our algorithm is $$O(n^2)$$ O ( n 2 ) for arbitrary processing times and it can be reduced to O(n) for unit processing times, where n is the number of jobs. The performance guarantees presented here match the best-known ones for special cases where classical precedence constraints and OR-precedence constraints coincide.

Funder

Alexander von Humboldt-Stiftung

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Management Science and Operations Research,General Engineering,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3