List Scheduling Algorithm Based on Virtual Scheduling Length Table in Heterogeneous Computing System

Author:

Zhou Naqin1,Liao Xiaowen2,Li Fufang23ORCID,Feng Yuanyong2,Liu Liangchen2

Affiliation:

1. Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 510006, China

2. School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China

3. Guangzhou Xuanyuan Research Institute Co. Ltd, Guangzhou 510006, China

Abstract

Edge computing needs the close cooperation of cloud computing to better meet various needs. Therefore, ensuring the efficient implementation of applications in cloud computing is not only related to the development of cloud computing itself but also affects the promotion of edge computing. However, resource management and task scheduling strategy are important factors affecting the efficient implementation of applications. Therefore, aiming at the task scheduling problem in cloud computing environment, this paper proposes a new list scheduling algorithm, namely, based on a virtual scheduling length (BVSL) table algorithm. The algorithm first constructs the predicted remaining length table based on the prescheduling results, then constructs a virtual scheduling length table based on the predicted remaining length table, the current task execution cost, and the actual start time of the task, and calculates the task priority based on the virtual scheduling length table to make the overall path the longest task is scheduled first, thus effectively shorten the scheduling length. Finally, the processor is selected for the task based on the predicted remaining length table. The selected processor may not be the earliest for the current task, but it can shorten the finish time of the task in the next phase and reduce the scheduling length. To verify the effectiveness of the scheduling method, experiments were carried out from two aspects: randomly generated graphs and real-world application graphs. Experimental results show that the BVSL algorithm outperforms the latest Improved Predict Priority Task Scheduling (IPPTS) and RE-18 scheduling methods in terms of makespan, scheduling length ratio, speedup, and the number of occurrences of better quality of schedules while maintaining the same time complexity.

Funder

Guangdong Province Key Field R&D Program Project

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3