Abstract
AbstractIn the field of time-dependent scheduling, a job’s processing time is specified by a function of its start time. While monotonic processing time functions are well-known in the literature, this paper introduces non-monotonic functions with a convex, piecewise-linear V-shape similar to the absolute value function. They are minimum at an ideal start time, which is the same for all given jobs. Then, the processing time equals the job’s basic processing time. Earlier or later, it increases linearly with slopes that can be asymmetric and job-specific. The objective is to sequence the given jobs on a single machine and minimize the makespan. This is motivated by production planning of moving car assembly lines, in particular, to sequence a worker’s assembly operations such that the time-dependent walking times to gather materials from the line-side is minimized. This paper characterizes the problem’s computational complexity in several angles. NP-hardness is observed even if the two slopes are the same for all jobs. A fully polynomial time approximation scheme is devised for the more generic case of agreeable ratios of basic processing time and slopes. In the most generic case with job-specific slopes, several polynomial cases are identified.
Funder
ZHAW Zurich University of Applied Sciences
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Management Science and Operations Research,General Engineering,Software
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献