Mixed-model moving assembly line material placement optimization for a shorter time-dependent worker walking time

Author:

Sedding Helmut A.ORCID

Abstract

AbstractCar mass production commonly involves a moving assembly line that mixes several car models. This requires plenty of material supplies at the line side, but available space is scarce. Thus, material is placed apart from ideal positions. Then, picking it up involves walking along the line. This time is non-productive and can encompass 10–15% of total production time. Thus, it is important to estimate and minimize it during production planning. However, the calculations are difficult because the conveyor continuously moves. Therefore, most literature bounds walking time by a constant, but this discards valuable potential. To better approximate it, we use a time-dependent V-shaped function. A comparison indicates that for a majority of instances, constant walking time estimates of 95% confidence are at least 51% higher. Then, we introduce a model to optimize material positions such that the model-mix walking time is minimized. This poses an NP-hard sequencing problem with a recursive and nonlinear objective function. Our key discovery is a lower bound on the objective of partial solutions, established by a Lagrangian relaxation that can be solved in quadratic time. Resulting branch and bound based algorithms allow to quickly and reliably optimize up to the largest real-world sized instances.

Funder

ZHAW Zurich University of Applied Sciences

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Management Science and Operations Research,General Engineering,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3