1. Alonso-Pecina, F., Pecero, J. E., & Romero, D. (2013). A three-phases based algorithm for the multi-mode resource-constrained multi-project scheduling problem. In G. Kendall, G. Vanden Berghe, & B. McCollum (Eds.), Proceedings of the 6th Multidisciplinary International Scheduling Conference (pp. 812–814). : MISTA.
2. Artigues, C., & Hebrard, E. (2013). MIP relaxation and large neighborhood search for a multi-mode resource-constrained multi-project scheduling problem. In G. Kendall, G. Vanden Berghe, & B. McCollum (Eds.), Proceedings of the 6th Multidisciplinary International Scheduling Conference (pp. 815–819). : MISTA.
3. Asta, S., Karapetyan, D., Kheiri, A., Özcan, E., & Parkes, A. (2013). Combining monte-carlo and hyper-heuristic methods for the multi-mode resource-constrained multi-project scheduling problem. In G. Kendall, G. Vanden Berghe, & B. McCollum (Eds.), Proceedings of the 6th Multidisciplinary International Scheduling Conference (pp. 836–839). : MISTA.
4. Blazewicz, J., Lenstra, J., & Rinnooy Kan, A. (1983). Scheduling subject to resource constraints: Classification and complexity. Discrete Applied Mathematics, 5(1), 11–24. doi: 10.1016/0166-218X(83)90012-4 .
5. Borba, L.M., Benavides, A.J., Zubaran, T., Carniel, G.C., & Ritt, M. (2013). A simple stochastic local search for multi-mode resource-constrained multi-project scheduling. In G. Kendall, G. Vanden Berghe, & B. McCollum (Eds.), Proceedings of the 6th Multidisciplinary International Scheduling Conference (pp. 826–830). : MISTA.