A GIS-based multi-objective evolutionary algorithm for landslide susceptibility mapping

Author:

Razavi-Termeh Seyed Vahid,Hatamiafkoueieh Javad,Sadeghi-Niaraki Abolghasem,Choi Soo-Mi,Al-Kindi Khalifa M.

Abstract

AbstractLandslides pose a significant threat to human life and infrastructure, underscoring the ongoing need for accurate landslide susceptibility mapping (LSM) to effectively assess risks. This study introduces an innovative approach that leverages multi-objective evolutionary fuzzy algorithms for landslide modeling in Khalkhal town, Iran. Two algorithms, namely the non-dominated sorting genetic algorithm II (NSGA-II) and the evolutionary non-dominated radial slots-based algorithm (ENORA), were employed to optimize Gaussian fuzzy rules. By utilizing 15 landslide conditioning factors (aspect, altitude, distance from the fault, soil, slope, lithology, rainfall, distance from the road, the normalized difference vegetation index (NDVI), land cover, plan curvature, profile curvature, topographic wetness index (TWI), stream power index (SPI), and distance from the river) and historical landslide events (153 landslide locations), we randomly partitioned the input data into training (70%) and validation (30%) sets. The training set determined the weight of conditioning factor classes using the frequency ratio (FR) approach. These weights were then used as inputs for the NSGA-II and ENORA algorithms to generate an LSM. The NSGA-II algorithm achieved a root-mean-square error (RMSE) of 0.25 during training and 0.43 during validation. Similarly, the ENORA algorithm demonstrated an RMSE of 0.28 in training and 0.48 in validation. The findings revealed that the LSM created by the NSGA-II algorithm exhibited superior predictive capabilities (area under the receiver operating characteristic curve (AUC) = 0.867) compared to the ENORA algorithm (AUC = 0.844). Additionally, a particle swarm optimization (PSO) algorithm was employed to determine the importance of conditioning factors, identifying lithology, land cover, and altitude as the most influential factors.

Funder

MSIT

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science,Safety, Risk, Reliability and Quality,Water Science and Technology,Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3