Simulation of seismic ground motion fields via object-oriented spatial statistics with an application in Northern Italy

Author:

Menafoglio AlessandraORCID,Sgobba Sara,Lanzano Giovanni,Pacor Francesca

Abstract

AbstractThis work offers a novel methodological framework to address the problem of generating data-driven earthquake shaking fields at different vibration periods, which are key to support decision making and civil protection planning. We propose to analyse the entire profiles of spectral accelerations and project their information content to unsampled locations in the system, based on the theory of Object Oriented Spatial Statistics. The proposed methodology combines a non-ergodic ground motion model with a fully functional model for the residual term, the latter consisting of (i) the spatially-varying systematic effects due to source, site and path, and (ii) the remaining aleatory error. The proposed methodology allows to generate multiple shaking scenarios conditioned on the data, jointly and consistently for all the vibration periods, overcoming the intrinsic limitations of existing multivariate approaches to the problem. The approach is tested on a vast dataset of ground motion records collected in the study-area of the Po Plain (Northern Italy), for which a region-specific fully non-ergodic GMM was previously calibrated. Our validation tests demonstrate the potentiality of the approach, which is capable to effectively simulate spectral acceleration profiles, while keeping the ability to capture the main physical features of ground motion patterns in the region.

Funder

Politecnico di Milano

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science,Safety, Risk, Reliability and Quality,Water Science and Technology,Environmental Chemistry,Environmental Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3