Probable streamflow changes and its associated risk to the water resources of Abuan watershed, Philippines caused by climate change and land use changes

Author:

Araza ArnanORCID,Perez Maricon,Cruz Rex Victor,Aggabao Larlyn Faith,Soyosa Eugene

Abstract

AbstractOne of the main impact areas of climate change (CC), and land use and land cover change (LULCC) is the hydrology of watersheds, which have negative implications to the water resources. Their impact can be indicated by changes on streamflow, which is quantifiable using process-based streamflow modelling of baseline and future scenarios. Here we include the uncertainty and associated risk of the streamflow changes for a robust impact assessment to agriculture. We created a baseline model and models of CC and LULCC “impact scenarios” that use: (1) the new climate projections until 2070 and (2) land cover scenarios worsened by forest loss, in a critical watershed in the Philippines. Simulations of peak flows by 26% and low flows by 63% from the baseline model improved after calibrating runoff, soil evaporation, and groundwater parameters. Using the calibrated model, impacts of both CC and LULCC in 2070 were indicated by water deficit (− 18.65%) from May to August and water surplus (12.79%) from November to December. Both CC and LULCC contributed almost equally to the deficit, but the surplus was more LULCC-driven. Risk from CC may affect 9.10% of the croplands equivalent to 0.31 million dollars, while both CC and LULCC doubled the croplands at risk (19.13%, 0.60 million dollars) in one cropping season. The findings warn for the inevitable cropping schedule adjustments in the coming decades, which both apply to irrigated and rainfed crops, and may have implications to crop yields. This study calls for better watershed management to mitigate the risk to crop production and even potential flood risks.

Funder

Department of Science and Technology

Commission on Higher Education

Philippine Council for Agriculture, Aquatic, and Natural Resources Research and Development

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science,Safety, Risk, Reliability and Quality,Water Science and Technology,Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3