Analysis of Effects of Spatial Distributed Soil Properties and Soil Moisture Behavior on Hourly Streamflow Estimate through the Integration of SWAT and LSM

Author:

Lee Seoro1ORCID,Lim Kyoung Jae2ORCID,Kim Jonggun2ORCID

Affiliation:

1. Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon-si 24341, Republic of Korea

2. Department of Regional Infrastructure Engineering, Kangwon National University, Chuncheon-si 24341, Republic of Korea

Abstract

This study addresses the challenge of accurately estimating hourly flow and soil moisture by integrating the Soil and Water Assessment Tool (SWAT) with a Land Surface Model (LSM). Our approach enhances SWAT by incorporating spatially distributed soil properties and a physically-based soil moisture process, using the Noah LSM for hourly soil moisture estimation. This integration captures spatial variations in soil moisture and hydraulic properties from remote sensing across the watershed. The parameter sensitivity analysis and the calibration of hourly flow were significantly impacted by the physically-based hourly soil moisture routing and the incorporation of spatially distributed soil properties. Consequently, the modified SWAT model showed improved accuracy in hourly flow simulations for long-term and multiple rainfall events. Validation results showed significant improvements, with Coefficient of Determination (R2) and Nash and Sutcliffe Efficiency (NSE) increasing by 25.95% and 33.3%, respectively, and Percent Bias (PBIAS) decreasing by 85.8%. Notably, the average error for peak flows across eight events decreased by 49%. These findings highlight the importance of initializing soil parameters based on spatial soil moisture distribution and incorporating physical process-based moisture routing to enhance hourly flow simulation accuracy. Future research should focus on validating the physical feasibility of the soil parameter set in the study area with detailed hourly flow and soil moisture data and exploring its applicability in various regions. This study provides valuable insights for the scientific community, water resources, and agricultural decision-makers regarding integrated modeling of soil moisture and hourly flow, which can inform dam operation management, disaster planning, and crop yield improvement.

Funder

Korea Environment Industry & Technology Institute (KEITI) through the Aquatic Ecosystem Conservation Research Program, funded by the Korea Ministry of Environment

Kangwon National University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3