Exploring zero-training algorithms for occupancy detection based on smart meter measurements
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Computer Science
Link
http://link.springer.com/article/10.1007/s00450-017-0344-9/fulltext.html
Reference52 articles.
1. Akbar A, Nati M, Carrez F, Moessner K (2015) Contextual occupancy detection for smart office by pattern recognition of electricity consumption data. In: 2015 IEEE international conference on communications (ICC), pp 561–566. doi: 10.1109/ICC.2015.7248381
2. Alhamoud A, Xu P, Englert F, Reinhardt A, Scholl P, Boehnstedt D, Steinmetz R (2015) Extracting human behavior patterns from appliance-level power consumption data. In: Proceedings of the 12th European conference on wireless sensor networks, EWSN 2015, Porto, Portugal, pp 52–67. doi: 10.1007/978-3-319-15582-1_4
3. Amayri M, Arora A, Ploix S, Bandhyopadyay S, Ngo QD, Badarla VR (2016) Estimating occupancy in heterogeneous sensor environment. Energy Build 129:46–58. doi: 10.1016/j.enbuild.2016.07.026
4. Ardakanian O, Bhattacharya A, Culler D (2016) Non-intrusive techniques for establishing occupancy related energy savings in commercial buildings. In: Proceedings of the 3rd ACM international conference on systems for energy-efficient built environments, buildSys ’16, pp 21–30. doi: 10.1145/2993422.2993574
5. Barbato A, Borsani L, Capone A, Melzi S (2009) Home energy saving through a user profiling system based on wireless sensors. In: Proceedings of the 1st ACM workshop on embedded sensing systems for energy-efficiency in buildings, buildSys ’09. ACM, New York, NY, USA, pp 49–54. doi: 10.1145/1810279.1810291
Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Increased understanding of building operation performance through Occupant-Centric Key Performance Indicators;Energy and Buildings;2024-09
2. A review of occupancy sensing technologies and approaches in smart buildings;International Journal of RF Technologies;2024-07-06
3. Analysis of the building occupancy estimation and prediction process: A systematic review;Energy and Buildings;2024-06
4. Fundamentals, Algorithms, and Technologies of Occupancy Detection for Smart Buildings Using IoT Sensors;Sensors;2024-03-26
5. Leveraging Machine Learning for Identifying Occupancy Patterns from Power Data with a Moving Window Feature Extraction Method;Lecture Notes in Networks and Systems;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3