Green synthesized ZnO nanoparticles by Saccharomyces cerevisiae and their antibacterial activity and photocatalytic degradation

Author:

El-Khawaga Ahmed M.,Elsayed Mohamed A.,Gobara Mohamed,Suliman Ahmad A.,Hashem Amr H.,Zaher Ahmed A.,Mohsen Mostafa,Salem Salem SORCID

Abstract

AbstractMany research papers are currently being written about various methodologies for the green synthesis of ZnO nanoparticles. In this study, ZnO nanoparticles were prepared by green synthesis method using baker’s yeast (Saccharomyces cerevisiae). The characterization of the produced ZnO nanoparticles involved the utilization of XRD, FTIR, SEM, and TEM. The investigation involved the assessment of the antimicrobial potential and photocatalytic degradation efficacy of the synthesized materials through the utilization of Eriochrome Black T (EBT). The results indicate that the ZnO nanoparticles exhibit a spherical morphology, exhibiting diameters ranging from 13.0 to 20.0nm, with an average particle size of 15.0nm. The antimicrobial efficacy against (S. aureus) gram-positive and (E. coli) gram-negative bacteria was tested through the conduction of zone of inhibition (ZOI) and minimum inhibitory concentration (MIC) tests. This research focused on the study of the photocatalytic-degradation of EBT in the presence of ultraviolet light. The experiments focused on the impact of various factors, such as pH levels, initial EBT concentration, and nanocatalyst dosage, on the observed photocatalytic efficiency. In the in vitro ZOI and MIC results assay, it was observed that ZnO nanoparticles (NPs) exhibited greater efficacy against gram-positive S. aureus, with a ZOI measuring 23.1 mm and a MIC of 0.625 μg/ml. In contrast, the effectiveness of ZnO-NPs against gram-negative E. coli was comparatively lower, as indicated by a ZOI of 17.0 mm and a MIC of 1.250μg/ml. The greatest EBT elimination, which achieved 83.0% in equilibrium, was found employing 20.0mg of ZnO NPs at pH 3.0, according to the photocatalytic activity results. The synthetic ZnO NPs are powerful antibacterial agents that are effective against tested bacteria and may be used in the treatment of wastewater.

Funder

Al-Azhar University

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3