Phytochemicals derived from Leucaena leucocephala (Lam.) de Wit (Fabaceae) biomass and their antimicrobial and antioxidant activities: HPLC analysis of extracts

Author:

Elbanoby Nourhan Elsayed,El-Settawy Ahmed A. A.,Mohamed Abeer A.,Salem Mohamed Z. M.

Abstract

Abstract The biomass production from Leucaena leucocephala (Lam.) de Wit (family Fabaceae) is a valuable source for chemical biorefinery. The bioactive molecules from the methanol extracts (MEs) from various parts of L. leucocephala grown in Egypt were evaluated. The antibacterial activity against the growth of Erwinia amylovora, Agrobacterium tumefaciens, and Staphylococcus aureus was determined by the inhibition zones (IZs) and the minimum inhibitory concentrations (MICs). The antifungal activity against the growth of Rhizoctonia solani, Fusarium solani, and Alternaria solani was recorded by measuring the fungal growth inhibition (FGI %) and MICs. The phytochemical compounds in the MEs were identified by HPLC–DAD, where the higher compounds identified (mg/kg ME) in seeds were benzoic acid (1520.44), myricetin (848.73), and rosmarinic acid (792.46); in roots, were benzoic acid (554.04), naringenin (419.99), and myricetin (205.51); in leaves were rosmarinic acid (4768.16), resveratrol (2983.99), quercetin (2052.43), myricetin (1432.63), and naringenin (1182.39); in branches, were rosmarinic acid (2230.26), resveratrol (1605.3), o-coumaric acid (691.16), and myricetin (681.93); in fruits were rosmarinic acid (431.43) and resveratrol (261.07); in stem-wood, were ellagic acid (1319.75), p-coumaric acid (1051.59), and ferulic acid (512.45); and in stem-bark, were resveratrol (1079.01), benzoic acid (1071.11), and catechol (305.51). The MEs at the concentration of 4000 mg/L from stem-wood, leaves, and stem-bark, the higher IZs against the growth of E. amylovora, A. tumefaciens, and S. aureus with values of 4.06 cm, 2.5 cm, and 2.63 cm, respectively, were found. The range of MICs values of MEs was 75–500 mg/L, 75–125 mg/L, and 75–125 mg/L, against the growth of A. tumefaciens, E. amylovora, and S. aureus, respectively. MEs prepared from seeds, fruits (pod), and stem-bark at 4000 mg/L showed the higher FGI (100%) against the growth of A. solani; MEs from seeds and branches observed the higher FGI values of 63.83% and 63.6%, respectively, against the growth of F. solani, and all MEs showed potent antifungal activity (FGI 100%) against R. solani except for leaf ME (88.06%). MICs were in the range of 250–500, 250–500, and 500–1000 mg/L against A. solani, F. solani, and R. solani, respectively. At 500 mg/L, the roots ME showed the highest total antioxidant activity (94.30%) compared to vitamin C (VC) (98.30%) at 100 mg/L. The EC50 values of the MEs from seeds, fruits, stem-bark, branches, stem-wood, leaves, and roots were 424.24 mg/L, 131.40 mg/L, 341.78 mg/L, 380.50 mg/L, 153.59 mg/L, 153.59 mg/L, and 129.89 mg/L compared with VC (6.88 mg/L). In conclusion, the botanical parts of L. leucocephala have several bioactive compounds, which can act as promising antimicrobial and antioxidant properties.

Funder

Alexandria University

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3