Combustion and mass loss behavior and characteristics of a single biomass pellet positioning at different orientations in a fixed bed reactor

Author:

El-Sayed Saad A.ORCID,Mostafa Mohamed E.,Khass Tarek M.,Noseir Emad H.,Ismail Mohamed A.

Abstract

Abstract This study aims to investigate the combustion characteristics and mass loss behaviors of rice straw and wheat straw biomass pellets experimentally in a laboratory fixed bed combustor under various operating conditions. High-speed photography was used to record images of the combustion process, and a sensitive balance was utilized for recording the particle mass history during the combustion process in addition to K-type thermocouples for temperature measurements. For both materials, the single pellet was exposed to various air temperatures and different flow rates of air. The orientation of the biomass pellet was positioned at various angles from 0 (horizontal), 30°, 45°, 60° (inclined), and 90° (parallel) to the hot air stream at different flow rates. Both glowing reactions and flameless ignition have been noticed in all experiments at all pellet orientations. All pellets experienced low and high luminosity volatiles without flames, followed by a bright radish color and short-lived combustion of the chars. Although the volatile contents of the two materials are identical, the volatile combustion duration of wheat straw (17–258 s) is less than that of rice straw (20–300 s), which could be due to differences in particle sizes, shapes, and structural compositions. The results also show that increased air temperatures lessen the time it takes for volatile and char to ignite and burn off. It also raises the temperature of surface ignition. Starting from the horizontal position and increasing the orientation angle of the pellet, the volatile and char ignition times increase up to 30° and then drop up to 90°, with angle 45° giving the lowest value. The same pattern was also noticed for volatile and char burnout times. The pellet horizontal position (0°) exhibits reduced combustion and mass loss (%) time intervals. The order of increasing the maximum temperature at the pellet surface was 30° > 60° > 90° angles. Increasing the air temperature reduces the times of char combustion, devolatilization, volatile burnout, and char burnout. As the air flow rate increases, the effect on the combustion parameters alternates between increasing and decreasing values.

Funder

Zagazig University

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3