Exploring HTL pathways in carbohydrate–protein mixture: a study on glucose–glycine interaction

Author:

Tito Edoardo,Pipitone GiuseppeORCID,Monteverde Videla Alessandro H. A.,Bensaid Samir,Pirone Raffaele

Abstract

AbstractThe hydrothermal liquefaction (HTL) of biomass is a strategic process to convert wet and waste feedstocks into liquid biofuel. In this work, we investigated the hydrothermal liquefaction of glucose and glycine, alone and together, to mimic the composition of low-lipid content biomass. Experimental tests were performed in a batch setup in the temperature range of 200–350 °C. As the feeding composition and temperature changed, the distribution among the different phases (gas, solid, biocrude, and aqueous phase) and their compositions were evaluated through different analytical techniques (GC–MS, µ-GC, HPLC). Glucose–glycine showed strongly different interactions with reaction temperature: increased biocrude production at high temperature and increased solid production at low temperature, following a proportionally inverse trend. Biocrude, as well as all the other phases, was observed to be completely different according to the feedstock used. To study how their formation and mutual interactions were affected by the composition of the starting feedstock, consecutive reactions of the generated phases were innovatively carried out. The solid phase generated from glucose–glycine interaction at low temperatures was experimentally observed to be mostly converted into biocrude at high temperatures. Furthermore, no interaction phenomena between the different phases were observed with glucose–glycine, while with glucose alone the co-presence of the molecules in the different phases seemed to be the cause for the lowest biocrude yield at high temperatures. The results obtained in this work can provide new insights into the understanding of hydrothermal liquefaction of low-lipid biomass, pointing out synergetic phenomena among both the biomolecules and the resulting phases.

Funder

Politecnico di Torino

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3