A Review of Hydrothermal Liquefaction of Biomass for Biofuels Production with a Special Focus on the Effect of Process Parameters, Co-Solvents, and Extraction Solvents

Author:

Mathanker AnkitORCID,Das Snehlata,Pudasainee DeepakORCID,Khan Monir,Kumar Amit,Gupta Rajender

Abstract

Hydrothermal liquefaction is one of the common thermochemical conversion methods adapted to convert high-water content biomass feedstocks to biofuels and many other valuable industrial chemicals. The hydrothermal process is broadly classified into carbonization, liquefaction, and gasification with hydrothermal liquefaction conducted in the intermediate temperature range of 250–374 °C and pressure of 4–25 MPa. Due to the ease of adaptability, there has been considerable research into the process on using various types of biomass feedstocks. Over the years, various solvents and co-solvents have been used as mediums of conversion, to promote easy decomposition of the lignocellulosic components in biomass. The product separation process, to obtain the final products, typically involves multiple extraction and evaporation steps, which greatly depend on the type of extractive solvents and process parameters. In general, the main aim of the hydrothermal process is to produce a primary product, such as bio-oil, biochar, gases, or industrial chemicals, such as adhesives, benzene, toluene, and xylene. All of the secondary products become part of the side streams. The optimum process parameters are obtained to improve the yield and quality of the primary products. A great deal of the process depends on understanding the underlined reaction chemistry during the process. Therefore, this article reviews the major works conducted in the field of hydrothermal liquefaction in order to understand the mechanism of lignocellulosic conversion, describing the concept of a batch and a continuous process with the most recent state-of-art technologies in the field. Further, the article provides detailed insight into the effects of various process parameters, co-solvents, and extraction solvents, and their effects on the products’ yield and quality. It also provides information about possible applications of products obtained through liquefaction. Lastly, it addresses gaps in research and provides suggestions for future studies.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3