Solvent production from rice straw by a co-culture of Clostridium acetobutylicum and Saccharomyces cerevisiae: effect of pH control

Author:

Capilla MiguelORCID,Valles AlejoORCID,San-Valero PauORCID,Álvarez-Hornos Francisco JavierORCID,Gabaldón CarmenORCID

Abstract

AbstractOne of the challenges in biofuel production from lignocellulosic wastes is to improve its conversion to solvents; therefore, new strategies to enhance xylose uptake are required due to be the secondary abundant sugar. In this context, a novel fermentation strategy integrating a co-culture of Clostridium acetobutylicum and Saccharomyces cerevisiae with pH control was developed. Initially, two different buffers, ammonium acetate and calcium carbonate, were tested under pHmin > 4.8 by fermenting 60 g L−1 of glucose with the C. acetobutylicum monoculture. Ammonium acetate was selected for fermenting media as butanol production was increased from 9.8 to 10.9 g L−1 over the calcium carbonate test. Comparing with the spontaneous acetone-butanol-ethanol (ABE) fermentation with C. acetobutylicum when no xylose consumption was observed, xylose consumption was efficiently increased by controlling pHmin > 4.8. The xylose consumption was > 47% either by using a 45:15 g L−1 glucose:xylose mixture or with rice straw (RS) hydrolysate. Clostridium monoculture using RS hydrolysate and pHmin > 4.8 produced a butanol (ABE) concentration of 6.5 (9.5) g L−1. While it increased to 7.0 (13.1) g L−1 when the co-culture with S. cerevisiae was used using same pH regulation strategy mainly due to ethanol increase up to 2.7 g L−1. Moreover, the xylose uptake doubled to 94% due to amino-acid secretion by yeast. Overall, this combined strategy was a very effective method for promoting sugar consumption and ABE solvent production from lignocellulosic waste.

Funder

Ministerio de Ciencia e Innovación

Conselleria d'Educació, Investigació, Cultura i Esport

Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana

Universitat de Valencia

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3