Two-stage optimisation for malachite green removal using activated date pits

Author:

Hijab M.ORCID,Saleem J.,Parthasarathy P.,Mackey H.R.,McKay G.

Abstract

AbstractWater pollution, from industry and agriculture, is a major threat to water security in the light of decreasing global potable water resources. Adsorption is one potential treatment technology for the removal of different contaminants from polluted water. Hard lignocellulose-containing materials with high carbon content, such as date stones, are excellent precursors for the production of activated carbons for adsorption activities. In this study, waste date stone biomass, from the seedless date products industry, was treated and activated chemically for the adsorption of malachite green dye, which is widely used in the plastics and textile industries. Phosphoric acid was used as an activating agent for the date stones, and its adsorption capability was measured and compared to the capacity of natural date stone powder. Experimental equilibrium data were analysed and correlated by four isotherm models: Langmuir, Freundlich, Temkin and Langmuir–Freundlich (also called SIPS). The best fit for the experimental data for both treated and natural date stone was the Langmuir–Freundlich isotherm. The surface areas and maximum malachite green adsorption capacities of the natural date stone and the phosphoric acid–treated date stone were 86 and 909 m2/g, respectively, and maximum malachite green adsorption capacities were 31.5 and 64.7 mg/g, respectively. A two-stage batch adsorber model was developed to optimize the two-step adsorption process to remove malachite green and minimize the amount of adsorbent used for both untreated and treated date stones. The benefits of the two-stage adsorber and chemically activated date stones are discussed in terms of designing for various percentages dye removal, various effluent discharge concentrations and various initial dye concentrations. The two-stage system resulted in a reduction of adsorbent compared with the one-stage system of 36 to 460% to remove the same amount of dye.

Funder

Hamad bin Khalifa University

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3