Abstract
Abstract
Lignocellulosic biomass is one of the most abundant bioresources on Earth. Over recent decades, various valorisation techniques have been developed to produce value-added products from the cellulosic and hemicellulosic fractions of this biomass. Lignin is the third major component accounting for 10–30% (w/w). However, it currently remains a largely unused fraction due to its recalcitrance and complex structure. The increase in the global demand for lignocellulosic biomass, for energy and chemical production, is increasing the amount of waste lignin available. Approaches to date for valorizing this renewable but heterogeneous chemical resource have mainly focused on production of materials and fine chemicals. Greater value could be gained by developing higher value pharmaceutical applications which would help to improve integrated biorefinery economics. In this review, different lignin extraction methods, such as organosolv and ionic liquid, and the properties and potential of the extracted chemical building blocks are first summarized with respect to pharmaceutical use. The review then discusses the many recent advances made regarding the medical or therapeutic potential of lignin-derived materials such as antimicrobial, antiviral, and antitumor compounds and in controlled drug delivery. The aim is to draw out the link between the source and the processing of the biomass and potential clinical applications. We then highlight four key areas for future research if therapeutic applications of lignin-derived products are to become commercially viable. These relate to the availability and processing of lignocellulosic biomass, technologies for the purification of specific compounds, enhancements in process yield, and progression to human clinical trials.
Funder
Biotechnology and Biological Sciences Research Council
FAPESP
Future Biomanufacturing Research Hub
H2020 Marie Skłodowska-Curie Actions
Royal Thai Government
Publisher
Springer Science and Business Media LLC
Subject
Renewable Energy, Sustainability and the Environment
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献