Suppressing the formation of N-heteroaromatics during hydrothermal liquefaction of proteinaceous model feedstock

Author:

Zimmermann JoschaORCID,Raffelt KlausORCID,Dahmen NicolausORCID

Abstract

AbstractHydrothermal liquefaction was applied to model mixtures containing lard oil (lipid), cellulose (carbohydrate), and bovine serum albumin (protein), representing biogenic organic waste feedstocks. The content of protein was kept constant for every experiment, while the lipid and cellulose content was changed, which is expressed by the lipid to protein (LtoP) or cellulose to protein (CtoP) ratio. The reactions were conducted at 350 °C with a residence time of 20 min in 25 ml micro autoclaves. Afterwards, the lumped recovery of carbon and nitrogen into the different product phases was investigated and representative compounds were identified to get an overview of the composition on a molecular level. A high LtoP ratio results in an increased biocrude yield and eventually higher carbon recovery, while the nitrogen recovery is slightly lowered. The formation of nitrogen containing heteroaromatic species could be suppressed by the addition of lipids from 6.10 to 0.03% for pyrazines and 2.69 to 0.43% for indoles. Consequently, the formation and nitrogen recovery by heteroaliphatic amide species increased from 0.00 to 8.77%. Different reaction pathways for the formation of the different species are proposed. It turned out that reactive amine from protein degradation can be “trapped” in stable amides, preventing the formation of nitrogen heteroaromatics with oxygenated from carbohydrates. Graphical abstract

Funder

HORIZON EUROPE Framework Programme

Karlsruher Institut für Technologie (KIT)

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3