Abstract
AbstractOrange peels (OPs) were valorized in a lab-scale biorefinery loop for the recovery of limonene and the subsequent production of volatile fatty acids (VFAs) and activated carbon (AC). Solid/liquid extraction of limonene was optimized using n-hexane at 85 °C with an OPs-to-solvent ratio of 2:1, allowing for a limonene recovery yield of 1.20% w/w. Then, post-extraction OPs were used for the production of both VFAs and AC. For VFA production, a hydraulic retention time (HRT) of 5 days and a total solid (TS) inlet content of 10% w/w were adopted leading to a VFA yield of about 43% gVFAs/gTS. Adsorption tests revealed that, among all the solid matrixes tested, only powdered activated carbon (PAC) was able to discriminate no-VFA compounds and allowed for VFA purification. For AC production, post-extraction OPs were firstly converted into biochar through slow pyrolysis at 550 °C for 1 h and then physically activated with CO2 at 880 °C for 1 h. Extraction did not appreciably affect OP properties, while pyrolysis increased the carbon content (from 43 to 83%) and the heating value (from 17 to 29 MJ/kg) of the material. Physical activation of OP biochar increased its surface area by almost ten times, from 40 to 326 m2/g, proving the effectiveness of the treatment.
Funder
Libera Università di Bolzano
Publisher
Springer Science and Business Media LLC
Subject
Renewable Energy, Sustainability and the Environment
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献