Abstract
AbstractFor $$n\ge 3$$
n
≥
3
and $$1<p<\infty $$
1
<
p
<
∞
, we prove an $$L^p$$
L
p
-version of the generalized trace-free Korn-type inequality for incompatible, p-integrable tensor fields $$P:\Omega \rightarrow \mathbb {R}^{n\times n}$$
P
:
Ω
→
R
n
×
n
having p-integrable generalized $${\text {Curl}}_{n}$$
Curl
n
and generalized vanishing tangential trace $$P\,\tau _l=0$$
P
τ
l
=
0
on $$\partial \Omega $$
∂
Ω
, denoting by $$\{\tau _l\}_{l=1,\ldots , n-1}$$
{
τ
l
}
l
=
1
,
…
,
n
-
1
a moving tangent frame on $$\partial \Omega $$
∂
Ω
. More precisely, there exists a constant $$c=c(n,p,\Omega )$$
c
=
c
(
n
,
p
,
Ω
)
such that $$\begin{aligned} \Vert P \Vert _{L^p(\Omega ,\mathbb {R}^{n\times n})}\le c\,\left( \Vert {\text {dev}}_n {\text {sym}}P \Vert _{L^p(\Omega ,\mathbb {R}^{n \times n})}+ \Vert {\text {Curl}}_{n} P \Vert _{L^p\left( \Omega ,\mathbb {R}^{n\times \frac{n(n-1)}{2}}\right) }\right) , \end{aligned}$$
‖
P
‖
L
p
(
Ω
,
R
n
×
n
)
≤
c
‖
dev
n
sym
P
‖
L
p
(
Ω
,
R
n
×
n
)
+
‖
Curl
n
P
‖
L
p
Ω
,
R
n
×
n
(
n
-
1
)
2
,
where the generalized $${\text {Curl}}_{n}$$
Curl
n
is given by $$({\text {Curl}}_{n} P)_{ijk} :=\partial _i P_{kj}-\partial _j P_{ki}$$
(
Curl
n
P
)
ijk
:
=
∂
i
P
kj
-
∂
j
P
ki
and "Equation missing" denotes the deviatoric (trace-free) part of the square matrix X. The improvement towards the three-dimensional case comes from a novel matrix representation of the generalized cross product.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Physics and Astronomy,General Mathematics
Reference17 articles.
1. Bauer, S., Neff, P., Pauly, D., Starke, G.: Dev-Div- and DevSym-DevCurl-inequalities for incompatible square tensor fields with mixed boundary conditions. ESAIM: Control, Optimisation and Calculus of Variations 22(1), 12–133 (2016)
2. Conti, S., Garroni, A.: Sharp rigidity estimates for incompatible fields as a consequence of the Bourgain Brezis div-curl result. Comptes Rendus. Mathématique, Tome 359(2), 155–160 (2021). https://doi.org/10.5802/crmath.161, https://comptes-rendus.academiesciences.fr/mathematique/articles/10.5802/crmath.161/
3. Dain, S.: Generalized Korn’s inequality and conformal Killing vectors. Calc. Var. Partial. Differ. Equ. 25(4), 535–540 (2006)
4. Fuchs, M., Schirra, O.: An application of a new coercive inequality to variational problems studied in general relativity and in Cosserat elasticity giving the smoothness of minimizers. Arch. Math. 93(6), 587–596 (2009)
5. Gmeineder, F., Spector, D.: On Korn-Maxwell-Sobolev Inequalities. J. Math. Anal. Appl. 502, 125226 (2021) https://doi.org/10.1016/j.jmaa.2021.125226
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献