Korn inequalities for incompatible tensor fields in three space dimensions with conformally invariant dislocation energy

Author:

Lewintan PeterORCID,Müller Stefan,Neff PatrizioORCID

Abstract

AbstractLet $$\Omega \subset \mathbb {R}^3$$ Ω R 3 be an open and bounded set with Lipschitz boundary and outward unit normal $$\nu $$ ν . For $$1<p<\infty $$ 1 < p < we establish an improved version of the generalized $$L^p$$ L p -Korn inequality for incompatible tensor fields P in the new Banach space $$\begin{aligned}&W^{1,\,p,\,r}_0({{\,\mathrm{dev}\,}}{{\,\mathrm{sym}\,}}{{\,\mathrm{Curl}\,}}; \Omega ,\mathbb {R}^{3\times 3}) \\&\quad = \{ P \in L^p(\Omega ; \mathbb {R}^{3 \times 3}) \mid {{\,\mathrm{dev}\,}}{{\,\mathrm{sym}\,}}{{\,\mathrm{Curl}\,}}P \in L^r(\Omega ; \mathbb {R}^{3 \times 3}),\ {{\,\mathrm{dev}\,}}{{\,\mathrm{sym}\,}}(P \times \nu ) = 0 \text { on }\partial \Omega \} \end{aligned}$$ W 0 1 , p , r ( dev sym Curl ; Ω , R 3 × 3 ) = { P L p ( Ω ; R 3 × 3 ) dev sym Curl P L r ( Ω ; R 3 × 3 ) , dev sym ( P × ν ) = 0 on Ω } where $$\begin{aligned} r \in [1, \infty ), \qquad \frac{1}{r} \le \frac{1}{p} + \frac{1}{3}, \qquad r >1 \quad \text {if }p = \frac{3}{2}. \end{aligned}$$ r [ 1 , ) , 1 r 1 p + 1 3 , r > 1 if p = 3 2 . Specifically, there exists a constant $$c=c(p,\Omega ,r)>0$$ c = c ( p , Ω , r ) > 0 such that the inequality $$\begin{aligned} \Vert P \Vert _{L^p(\Omega ,\mathbb {R}^{3\times 3})}\le c\,\left( \Vert {{\,\mathrm{sym}\,}}P \Vert _{L^p(\Omega ,\mathbb {R}^{3\times 3})} + \Vert {{\,\mathrm{dev}\,}}{{\,\mathrm{sym}\,}}{{\,\mathrm{Curl}\,}}P \Vert _{L^{r}(\Omega ,\mathbb {R}^{3\times 3})}\right) \end{aligned}$$ P L p ( Ω , R 3 × 3 ) c sym P L p ( Ω , R 3 × 3 ) + dev sym Curl P L r ( Ω , R 3 × 3 ) holds for all tensor fields $$P\in W^{1,\,p, \, r}_0({{\,\mathrm{dev}\,}}{{\,\mathrm{sym}\,}}{{\,\mathrm{Curl}\,}}; \Omega ,\mathbb {R}^{3\times 3})$$ P W 0 1 , p , r ( dev sym Curl ; Ω , R 3 × 3 ) . Here, $${{\,\mathrm{dev}\,}}X :=X -\frac{1}{3} {{\,\mathrm{tr}\,}}(X)\,{\mathbb {1}}$$ dev X : = X - 1 3 tr ( X ) 1 denotes the deviatoric (trace-free) part of a $$3 \times 3$$ 3 × 3 matrix X and the boundary condition is understood in a suitable weak sense. This estimate also holds true if the boundary condition is only satisfied on a relatively open, non-empty subset $$\Gamma \subset \partial \Omega $$ Γ Ω . If no boundary conditions are imposed then the estimate holds after taking the quotient with the finite-dimensional space $$K_{S,dSC}$$ K S , d S C which is determined by the conditions $${{\,\mathrm{sym}\,}}P =0$$ sym P = 0 and $${{\,\mathrm{dev}\,}}{{\,\mathrm{sym}\,}}{{\,\mathrm{Curl}\,}}P = 0$$ dev sym Curl P = 0 . In that case one can replace $$\Vert {{\,\mathrm{dev}\,}}{{\,\mathrm{sym}\,}}{{\,\mathrm{Curl}\,}}P \Vert _{L^r(\Omega ,\mathbb {R}^{3\times 3})} $$ dev sym Curl P L r ( Ω , R 3 × 3 ) by $$\Vert {{\,\mathrm{dev}\,}}{{\,\mathrm{sym}\,}}{{\,\mathrm{Curl}\,}}P \Vert _{W^{-1,p}(\Omega ,\mathbb {R}^{3\times 3})}$$ dev sym Curl P W - 1 , p ( Ω , R 3 × 3 ) . The new $$L^p$$ L p -estimate implies a classical Korn’s inequality with weak boundary conditions by choosing $$P=\mathrm {D}u$$ P = D u and a deviatoric-symmetric generalization of Poincaré’s inequality by choosing $$P=A\in {{\,\mathrm{\mathfrak {so}}\,}}(3)$$ P = A so ( 3 ) . The proof relies on a representation of the third derivatives $$\mathrm {D}^3 P$$ D 3 P in terms of $$\mathrm {D}^2 {{\,\mathrm{dev}\,}}{{\,\mathrm{sym}\,}}{{\,\mathrm{Curl}\,}}P$$ D 2 dev sym Curl P combined with the Lions lemma and the Nečas estimate. We also discuss applications of the new inequality to the relaxed micromorphic model, to Cosserat models with the weakest form of the curvature energy, to gradient plasticity with plastic spin and to incompatible linear elasticity.

Funder

Deutsche Forschungsgemeinschaft

Deutsche ForschungsgemeinschaftDeutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Analysis

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3