Abstract
AbstractLet $$\Omega \subset \mathbb {R}^3$$
Ω
⊂
R
3
be an open and bounded set with Lipschitz boundary and outward unit normal $$\nu $$
ν
. For $$1<p<\infty $$
1
<
p
<
∞
we establish an improved version of the generalized $$L^p$$
L
p
-Korn inequality for incompatible tensor fields P in the new Banach space $$\begin{aligned}&W^{1,\,p,\,r}_0({{\,\mathrm{dev}\,}}{{\,\mathrm{sym}\,}}{{\,\mathrm{Curl}\,}}; \Omega ,\mathbb {R}^{3\times 3}) \\&\quad = \{ P \in L^p(\Omega ; \mathbb {R}^{3 \times 3}) \mid {{\,\mathrm{dev}\,}}{{\,\mathrm{sym}\,}}{{\,\mathrm{Curl}\,}}P \in L^r(\Omega ; \mathbb {R}^{3 \times 3}),\ {{\,\mathrm{dev}\,}}{{\,\mathrm{sym}\,}}(P \times \nu ) = 0 \text { on }\partial \Omega \} \end{aligned}$$
W
0
1
,
p
,
r
(
dev
sym
Curl
;
Ω
,
R
3
×
3
)
=
{
P
∈
L
p
(
Ω
;
R
3
×
3
)
∣
dev
sym
Curl
P
∈
L
r
(
Ω
;
R
3
×
3
)
,
dev
sym
(
P
×
ν
)
=
0
on
∂
Ω
}
where $$\begin{aligned} r \in [1, \infty ), \qquad \frac{1}{r} \le \frac{1}{p} + \frac{1}{3}, \qquad r >1 \quad \text {if }p = \frac{3}{2}. \end{aligned}$$
r
∈
[
1
,
∞
)
,
1
r
≤
1
p
+
1
3
,
r
>
1
if
p
=
3
2
.
Specifically, there exists a constant $$c=c(p,\Omega ,r)>0$$
c
=
c
(
p
,
Ω
,
r
)
>
0
such that the inequality $$\begin{aligned} \Vert P \Vert _{L^p(\Omega ,\mathbb {R}^{3\times 3})}\le c\,\left( \Vert {{\,\mathrm{sym}\,}}P \Vert _{L^p(\Omega ,\mathbb {R}^{3\times 3})} + \Vert {{\,\mathrm{dev}\,}}{{\,\mathrm{sym}\,}}{{\,\mathrm{Curl}\,}}P \Vert _{L^{r}(\Omega ,\mathbb {R}^{3\times 3})}\right) \end{aligned}$$
‖
P
‖
L
p
(
Ω
,
R
3
×
3
)
≤
c
‖
sym
P
‖
L
p
(
Ω
,
R
3
×
3
)
+
‖
dev
sym
Curl
P
‖
L
r
(
Ω
,
R
3
×
3
)
holds for all tensor fields $$P\in W^{1,\,p, \, r}_0({{\,\mathrm{dev}\,}}{{\,\mathrm{sym}\,}}{{\,\mathrm{Curl}\,}}; \Omega ,\mathbb {R}^{3\times 3})$$
P
∈
W
0
1
,
p
,
r
(
dev
sym
Curl
;
Ω
,
R
3
×
3
)
. Here, $${{\,\mathrm{dev}\,}}X :=X -\frac{1}{3} {{\,\mathrm{tr}\,}}(X)\,{\mathbb {1}}$$
dev
X
:
=
X
-
1
3
tr
(
X
)
1
denotes the deviatoric (trace-free) part of a $$3 \times 3$$
3
×
3
matrix X and the boundary condition is understood in a suitable weak sense. This estimate also holds true if the boundary condition is only satisfied on a relatively open, non-empty subset $$\Gamma \subset \partial \Omega $$
Γ
⊂
∂
Ω
. If no boundary conditions are imposed then the estimate holds after taking the quotient with the finite-dimensional space $$K_{S,dSC}$$
K
S
,
d
S
C
which is determined by the conditions $${{\,\mathrm{sym}\,}}P =0$$
sym
P
=
0
and $${{\,\mathrm{dev}\,}}{{\,\mathrm{sym}\,}}{{\,\mathrm{Curl}\,}}P = 0$$
dev
sym
Curl
P
=
0
. In that case one can replace $$\Vert {{\,\mathrm{dev}\,}}{{\,\mathrm{sym}\,}}{{\,\mathrm{Curl}\,}}P \Vert _{L^r(\Omega ,\mathbb {R}^{3\times 3})} $$
‖
dev
sym
Curl
P
‖
L
r
(
Ω
,
R
3
×
3
)
by $$\Vert {{\,\mathrm{dev}\,}}{{\,\mathrm{sym}\,}}{{\,\mathrm{Curl}\,}}P \Vert _{W^{-1,p}(\Omega ,\mathbb {R}^{3\times 3})}$$
‖
dev
sym
Curl
P
‖
W
-
1
,
p
(
Ω
,
R
3
×
3
)
. The new $$L^p$$
L
p
-estimate implies a classical Korn’s inequality with weak boundary conditions by choosing $$P=\mathrm {D}u$$
P
=
D
u
and a deviatoric-symmetric generalization of Poincaré’s inequality by choosing $$P=A\in {{\,\mathrm{\mathfrak {so}}\,}}(3)$$
P
=
A
∈
so
(
3
)
. The proof relies on a representation of the third derivatives $$\mathrm {D}^3 P$$
D
3
P
in terms of $$\mathrm {D}^2 {{\,\mathrm{dev}\,}}{{\,\mathrm{sym}\,}}{{\,\mathrm{Curl}\,}}P$$
D
2
dev
sym
Curl
P
combined with the Lions lemma and the Nečas estimate. We also discuss applications of the new inequality to the relaxed micromorphic model, to Cosserat models with the weakest form of the curvature energy, to gradient plasticity with plastic spin and to incompatible linear elasticity.
Funder
Deutsche Forschungsgemeinschaft
Deutsche ForschungsgemeinschaftDeutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis