Abstract
AbstractWe generalize the usual Doob maximal operator as well as the fractional maximal operator and introduce $$M_{\gamma ,s,\alpha }$$
M
γ
,
s
,
α
, a new fractional maximal operator for martingales. We prove that under the log-Hölder continuity condition of the variable exponents $$p(\cdot )$$
p
(
·
)
and $$q(\cdot )$$
q
(
·
)
, the maximal operator $$M_{\gamma ,s,\alpha }$$
M
γ
,
s
,
α
is bounded from the variable Lebesgue space $$L_{q(\cdot )}$$
L
q
(
·
)
to $$L_{p(\cdot )}$$
L
p
(
·
)
and from the variable Hardy space $$H_{q(\cdot )}$$
H
q
(
·
)
to $$L_{p(\cdot )}$$
L
p
(
·
)
, whenever $$0 \le \alpha <1$$
0
≤
α
<
1
, $$0<q_-\le q_+ \le 1/\alpha $$
0
<
q
-
≤
q
+
≤
1
/
α
, $$0<\gamma ,s<\infty $$
0
<
γ
,
s
<
∞
, $$1/p(\cdot )= 1/q(\cdot )- \alpha $$
1
/
p
(
·
)
=
1
/
q
(
·
)
-
α
and $$1/p_- - 1/p_+ < \gamma +s$$
1
/
p
-
-
1
/
p
+
<
γ
+
s
. Moreover, for $$\alpha =0$$
α
=
0
, the operator $$M_{\gamma ,s,0}$$
M
γ
,
s
,
0
generates equivalent quasi-norms on the Hardy spaces $$H_{p(\cdot )}$$
H
p
(
·
)
.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Reference50 articles.
1. Arai, R., Nakai, E., Sadasue, G.: Fractional integrals and their commutators on martingale Orlicz spaces. J. Math. Anal. Appl. 487(2), 123991 (2020)
2. Capone, C., Cruz-Uribe, D., Fiorenza, A.: The fractional maximal operator and fractional integrals on variable $$L^p$$ spaces. Rev. Mat. Iberoam. 23(3), 743–770 (2007)
3. Cruz-Uribe, D., Fiorenza, A., Neugebauer, C.: The maximal function on variable $$L^p$$ spaces. Ann. Acad. Sci. Fenn. Math. 28, 223–238 (2003)
4. Cruz-Uribe, D., Wang, D.: Variable Hardy spaces. Indiana Univ. Math. J. 63(2), 447–493 (2014)
5. Cruz-Uribe, D.V., Fiorenza, A.: Variable Lebesgue spaces. Foundations and Harmonic Analysis. New York, NY: Birkhäuser/Springer (2013)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献