Abstract
AbstractIn stress conditions, as neoplastic transformation, amino acids serve not only as nutrients to maintain the cell survival but also as mediators of several regulatory pathways which are involved in apoptosis and autophagy. Especially, under glucose deprivation, in order to maintain the cell survival, proline and glutamine together with other glutamine-derived products such as glutamate, alpha-ketoglutarate, and ornithine serve as alternative sources of energy. They are substrates for production of pyrroline-5-carboxylate which is the product of conversion of proline by proline dehydrogenase/ proline oxidase (PRODH/POX) to produce ATP for protective autophagy or reactive oxygen species for apoptosis. Interconversion of proline, ornithine, and glutamate may therefore regulate PRODH/POX-dependent apoptosis/autophagy. The key amino acid is proline, circulating between mitochondria and cytoplasm in the proline cycle. This shuttle is known as proline cycle. It is coupled to pentose phosphate pathway producing nucleotides for DNA biosynthesis. PRODH/POX is also linked to p53 and AMP-activated protein kinase (AMPK)-dependent pathways. Proline availability for PRODH/POX-dependent apoptosis/autophagy is regulated at the level of collagen biosynthesis (proline utilizing process) and prolidase activity (proline supporting process). In this review, we suggest that amino acid metabolism linking TCA and Urea cycles affect PRODH/POX-dependent apoptosis/autophagy and the knowledge might be useful to targeted cancer therapy.
Funder
Polish National Science Center
H2020 Marie Skłodowska-Curie Actions
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Clinical Biochemistry,Molecular Biology,General Medicine
Reference91 articles.
1. Mariño G, Niso-Santano M, Baehrecke EH, Kroemer G (2014) Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15:81–94. https://doi.org/10.1038/nrm3735
2. Shen S, Kepp O, Kroemer G (2012) The end of autophagic cell death? Autophagy 8:1–3. https://doi.org/10.4161/auto.8.1.16618
3. Phang JM (1985) The regulatory functions of proline and pyrroline-5-carboxylic acid. Curr Top Cell Regul 25:91–132
4. Pandhare J, Donald SP, Cooper SK, Phang JM (2009) Regulation and function of proline oxidase under nutrient stress. J Cell Biochem 107:759–768. https://doi.org/10.1002/jcb.22174
5. Donald SP, Sun XY, Hu CA, Yu J, Mei JM, Valle D, Phang JM (2001) Proline oxidase, encoded by p53-induced gene-6, catalyzes the generation of proline-dependent reactive oxygen species. Cancer Res 61:1810–1815
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献