The miR-183/96/182 cluster is upregulated in glioblastoma carrying EGFR amplification

Author:

Schneider BjörnORCID,William Doreen,Lamp Nora,Zimpfer Annette,Henker Christian,Classen Carl Friedrich,Erbersdobler Andreas

Abstract

AbstractGlioblastoma (GBM) is one of the most frequent primary brain tumors. Limited therapeutic options and high recurrency rates lead to a dismal prognosis. One frequent, putative driver mutation is the genomic amplification of the oncogenic receptor tyrosine kinase EGFR. Often accompanied by variants like EGFRvIII, heterogenous expression and ligand independent signaling render this tumor subtype even more difficult to treat, as EGFR-directed therapeutics show only weak effects at best. So EGFR-amplified GBM is considered to have an even worse prognosis, and therefore, deeper understanding of molecular mechanisms and detection of potential targets for novel therapeutic strategies is urgently needed. In this study, we looked at the level of microRNAs (miRs), small non-coding RNAs frequently deregulated in cancer, both acting as oncogenes and tumor suppressors. Comparative analysis of GBM with and without EGFR amplification should give insight into the expression profiles of miRs, which are considered both as potential targets for directed therapies or as therapeutic reagents. Comparison of miR profiles of EGFR-amplified and EGFR-normal GBM revealed an upregulation of the miR-183/96/182 cluster, which is associated with oncogenic properties in several tumor entities. One prominent target of this miR cluster is FOXO1, a pro-apoptotic factor. By observing FOXO1 downregulation in EGFR-amplified tumors, we can see a significant correlation of EGFR amplification, miR-183/96/182 cluster upregulation, and repression of FOXO1. Although no significant difference in overall survival is shown, these data may contribute to the molecular understanding of this tumor subtype and offer potential targets for miR-based therapies.

Funder

Universitätsmedizin Rostock

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3