High-Speed Neural Imaging with Synaptic Resolution: Bessel Focus Scanning Two-Photon Microscopy and Optical-Sectioning Widefield Microscopy

Author:

Meng Guanghan,Zhang Qinrong,Ji Na

Abstract

AbstractBrain is composed of complex networks of neurons that work in concert to underlie the animal’s cognition and behavior. Neurons communicate via structures called synapses, which typically require submicron spatial resolution to visualize. To understand the computation of individual neurons as well as neural networks, methods that can monitor neuronal morphology and function in vivo at synaptic spatial resolution and sub-second temporal resolution are required. In this chapter, we discuss the principles and applications of two enabling optical microscopy methods: two-photon fluorescence microscopy equipped with Bessel focus scanning technology and widefield fluorescence microscopy with optical sectioning ability, both of which could be combined with optogenetic stimulation for all optical interrogation of neural circuits. Details on their design and implementation, as well as example applications, are presented.

Publisher

Springer US

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3