Fast two-photon imaging of subcellular voltage dynamics in neuronal tissue with genetically encoded indicators

Author:

Chamberland Simon1,Yang Helen H2ORCID,Pan Michael M34,Evans Stephen W234,Guan Sihui5ORCID,Chavarha Mariya234,Yang Ying234,Salesse Charleen1ORCID,Wu Haodi6,Wu Joseph C6,Clandinin Thomas R2ORCID,Toth Katalin1ORCID,Lin Michael Z234ORCID,St-Pierre François345ORCID

Affiliation:

1. Department of Psychiatry and Neuroscience, Quebec Mental Health Institute, Université Laval, Québec, Canada

2. Department of Neurobiology, Stanford University, Stanford, United States

3. Department of Bioengineering, Stanford University, Stanford, United States

4. Department of Pediatrics, Stanford University, Stanford, United States

5. Department of Neuroscience, Baylor College of Medicine, Houston, United States

6. Stanford Cardiovascular Institute, Stanford University, Stanford, United States

Abstract

Monitoring voltage dynamics in defined neurons deep in the brain is critical for unraveling the function of neuronal circuits but is challenging due to the limited performance of existing tools. In particular, while genetically encoded voltage indicators have shown promise for optical detection of voltage transients, many indicators exhibit low sensitivity when imaged under two-photon illumination. Previous studies thus fell short of visualizing voltage dynamics in individual neurons in single trials. Here, we report ASAP2s, a novel voltage indicator with improved sensitivity. By imaging ASAP2s using random-access multi-photon microscopy, we demonstrate robust single-trial detection of action potentials in organotypic slice cultures. We also show that ASAP2s enables two-photon imaging of graded potentials in organotypic slice cultures and in Drosophila. These results demonstrate that the combination of ASAP2s and fast two-photon imaging methods enables detection of neural electrical activity with subcellular spatial resolution and millisecond-timescale precision.

Funder

American Heart Association

Burroughs Wellcome Fund

Canadian Institutes of Health Research

Natural Sciences and Engineering Research Council of Canada

National Institutes of Health

National Science Foundation

Rita Allen Foundation

Robert and Janice McNair Foundation

Stanford University

The Walter V. and Idun Berry

Université Laval Neuroscience Thematic Research Centre

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3